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The need for efficient damping of vibrations over a broad range of frequencies and ampli- 
tudes dictates the use of controlled vibration dampers in many situations. Several such 
devices are described in [l to 41, The present paper concerns the dynamics of an impact- 

type controlled vibration damping model. 

Applying the usual simplifications, we shall consider the problem of forced vibrations 
of a nonlinear system with controlled interactions of the absolutely inelastic collision 

type occurring between its two masses . The instants at which these interactions take 

place are determined by the position of the principal mass of the system only. Compu- 

tations carried out by the method of point transformations with the aid of bifurcation 
theory are used to determine the amplitude characteristics of the double-impact sym- 
metrical periodic motion, The domain of existence and stability of this motion turns 
out to be considerably larger than in the case of an ordinary impact-type vibration dam- 
per [5 to ‘I] in which c_ollision interactions occur in configurations determined by the 

relative positions of both masses, With a relative damper mass p < 4/ (n2 - 4) z 0.68, 
the double-impact mode is stable over the entire frequency range. This fact is extremely 
significant, since in other modes the interactions can be the cause of dangerous resonance 

vibrations [7 and 81, 
The vibration damping model considered is much more efficient than that of an opti- 

mum tuned Lanchester viscous damper [9], as well as of a damper with an extremal 

damping factor control PI, 

1, The squrtion8 of motion, The vibrational system which we shall con- 

sider consists of an elastically fastened principal mass Msubjected to a force of the form 
F cos fl t . Atop the mass M is a second mass m which can move freely relative to the. 
principal mass in the direction of action of the external force. When the mass M passes 
through the position 5 = 0 corresponding to the undeformed state of the elastic fastening, 
the masses experience momentary coupling, i. e. an interaction of the absolutely inelas- 

tic collision type (one way of accomplishing this coupling is by transmission of a pulse 
into the winding of an electromagnet). Let us write out the equations of motion of the 

model neglecting frictional forces 
ME” + kg = F cos Bt, q- = 0 G #Oo) 

5,’ = q*’ zzz ME_’ + w- 
M f m 

(f = 0) 

(1.1) 

(1.2) 
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In these equations the displacement of the mass M is denoted by 5. The velocities 

of the masses immediately before and immediately after their interaction are given by 
5-O , Q _* and {+* , q+’ , respectively. The coefficient k characterizes the rigidity 

of the elastic coupling. 

By introducing the dimensionless variables and time 

x=tktF, y=qkJF, T=tl/k/M 

we can write the initial equations in simpler ror~$ 

5” + 5 = COS C&G, y” = 0. (2 # 0) 

(1.3) 

ii.4) 

2+ 
*- - y+’ = x_’ + P?/- 

l+P 
(I = 0) 

The dimensionless parameters /l and W are related to the dimensional parameters by 

the relations 

2, The domain of existence rnd rtrbility of the periodic 

motion, The motions described by Equations (1.4) occur in the planes $/ ’ = const 
of the four-dimensional phase space x , x l . g’ , 7.. At x = 0 there occurs instantan- 

eous transition of the phase point from one plane g* = const to another. In order to 
study the periodic motions, let us consider a point transformation into itself of the surface 

x = 0 of interaction of masses as defined by Equations (1.4) and (1. 5). 
Let the initial point MO{r, = 0, x,,O’ = q,,‘, zO} of the transformation correspond to 

the instant directly following the interaction of the masses, and let the transformed point 
M, (21 = 0, 21’ = y1’, Zl) correspond to the instant immediately following their next 
interaction. Since the interactions occur in accordance with condition (1.5) and since 
the dynamic tiodel behaves like a single mass immediately after the collision, the prob- 

lem reduces to the investigation of stationary transformation points of the two-dimen- 
sional surfaces x’ , 7 , The relationship between the Lvordinates of the initial and 

final points of the transformation can be obtained directly by solving Equations (1.4) 
with allowance for (1. 5). It turns out to be 

(~6~’ fi ab sin ozO) sin (Z, - Z,) - b COS WOO COS (z1 - to) + 2~ COS @Jr1 = @ 

(1 + PL) Xl' = po' $ (Q' + ob sin ato) cos (z, - To) -1 (2.1) 

+ b cos wz,sin (zl - zO) - wb sin 0% (b _- l/(1 - ~9)) 

The first equation of (2.1) specifies some instant 71 of interaction between the masses 
satisfying the condition 71 > To . The second equation can be used to find the trans- 
formed coordinate x1 ’ . 

The coordinates of the stationary transformation point corresponding to the symmetri- 

cal double-impact periodic motion can be found from Equations (2.1) together with the 
conditions 

X1 = -20, tl=To+-;- (2.2) 

After some simple transrormatlons the required relations become 

a-l 
h.aOTOcan~ = 1, ~‘=ob(h--1)sinoto ! .-!L 

h== 1+p ) 
(2.3) 

In order to isolate the domain of existence and stability of the periodic mode under 

investigation in the parameter plane h , W,let us investigate the stability of the station- 
ary transformation points found above. Varying point transformation equations (2.1) in 
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the neighborhood of these points and setting 

6t, = z&o, 6x1’ = - ZSX,’ 

we obtain the characteristic equation 

The periodic motion is stable if the roots of Equation (2. 4) lie withjn a unit circle for 
the parameters W and h corresponding to this motion. For Z = + 1 instability can arise 
on the boundary N+ whose equation can be obtained from (2.4) by substituting in z = + 1 

n 
1 $h%9tu? s==O (2.5) 

Forz= - 1 and z = e3’ instability arises on the boundaries N_ and fl 
cp’ 

respectively. 
The equations of these boundaries are 

h = 1, o = 112, i/4, 116, . . . (2.6) 

I. = 0, LJLoa sin2 $ = 3 - cos + 
( )i 

1 -+ ~0s 4 
i (2.7) 

Since Equation (2.5) cannot be satisfied by real values of i and W, the domain of sta- 
bility is bounded only by the segments N_ and N . Verification of the stability of the 

periodic motion for specific parameter values sh?wed that the domain of stability is 

defined by the inequalities 

O<h<min 1, 
1 

(3-cosn/o)(1 + cosTc/o) 
W2sirPn./o (0 > 0) 

The indicated domain of parameter values is shown in Fig. 1. We note that for 

A < 4Rr2, i. e. for 4 
$ < ns-4 -- z 0.68 

the periodic motion under investigation is stable over the entire frequency range. 

(2.8) 

3, Violrtlon of thr conditionr of rxirtsnce due to rdditlonrl 
intsrrctionr, Special bifurcation pointr. Additional interactions of the 
masses can result not only in loss of stability, but also in disruption of the double-impact 
periodic motion. This occurs when the function x( ‘To + 7 ‘). given in accordance with 

(2.1) by Equation 
z (to f Z’) = (50’ + ob sin 0x0) sin %’ - b cos or0 cos %’ + b cos 0 (to -I- z’) (3.1) 

vanishes within the time interval [To, 70 +TT /WI, 
One of the causes of additional interactions can 

Fig. 1 Fig. 2 
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Xo’ given by Equation (2.3). But the relationship between the pre- and post-impact 

velocities for the periodic motion under investigation, i. e. 

x_* = (1 + Zp,) ZOO’ (3.2) 

implies that these velocities are always of the same sign. 
Another reason for the appearance of additional interactions is the attainment of zero 

value by the extremum point of the function X ( 7 ’ ). The equation of the corresponding 
existence boundary CT in the parameter plane can be derived from the conditions that 

x (z, if- z’) = 0, 2’ (To + z’) = 0 (3.3) 

at the instant To + ‘T ‘. 

Making use of Equations (2.1) and (2.3), we can write conditions (3.3) in the form 
z 

- wtaa 20 + sin 0%’ co5 r’ - w cos 0& sin z’ + (sin 0~’ sin z’ + w cos or’ cos z’) ti & = 0 

h 
[ 
cos z‘ + (sin r’ - 0 sin or’) u~f 1 - cos ato = 0 ( O<Tl< + 1 (3.4) 

The investigation of transcendental equations (3.4) can be simplified substantially by 
finding the special bifurcation points at which the bifurcation curves C;originate. To 
this end Equations (3.4) must be supplemented by a condition of “creation” or “disappear- 

ance” of curves CT. Fig, 2 shows two possible cases of behavior of the function X( T ‘) 

prior to the disappearance of c, . 
The first case corresponds to the merging of the tangent point X ( 7 ‘) with the station- 

ary transformation point : T‘-+T~. Analytically, this condition can be written as 

z (zo) = 0, d’(70) = 0, 2’. (z,) = 0 (3.5) 

The second case corresponds to the merging of the two tangent points : 7 ‘*TN. Here 

the function and its first three derivatives vanish at the instant T: 

z (‘c’) = 0, 2’ (7’) = 0, 2” (.t’) = 0, 5”’ (r’) :zY 0 (3.6) 

After some simple transformations taking account of (2.3) and (3 Z), conditions (3. 5) 
and (3.6) imposed on function (3.1) yield, in the first case, the following values for 
the coordinates of the special bifurcation points: 

0 = r/a, l/a, Vg, . . . f h = 1 J 0 = l/2, liar 116, . . . , h = -1 (3.7) 

In the second case they yield the incompatible equations 

cos 0 (to + z’) = 0, sin 0 (z. + 9) = 0 

Hence, the boundaries c,,. of the domain of existence of the mode under investigation 
vanish when the tangency point merges with the stationary transformation poinf The 
existence of bifurcation curves CTclosed, or originating and ending at infinity, remains 

a possibility. Computations carried out on a “Razdan-2” computer indicated the absence 
of such boundaries. As regards the curves CT originating at points (3.7). these isolate 
narrow domains of existence of more complex 

cies UJ = ‘13 , ‘1s , l/y , . . . (Fig. 1) , 
modes in the neighborhood of the frequen- 

4, Amplitude of the forced vibratIona. Comprrrtive eatlmrte 
of the vibration damping efficiency. The displacement X( 7) of the 
principal mass of the vibrating system during the half-period 0 c T - To s n/W is 
determined by Expression (3.1) and by the values of To and Xo’ as found from Equations 

(2.3). The displacement X ( 7) is equal to zero at the beginning and end of the 
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indicated half-period. The amplitude value x is attained at some instant TO. The 
dependence x(W) of the forced vibration amplitude on frequency computed electroni- 

cally for various values of p appear in Fig. 3 . 
As we know, the application of an ordinary impact 

damper can markedly reduce vibrations for specific 

frequencies and amplitudes of the disturbing force ; 
conversely, it can sharply increase vibrations for other 

frequencies and amplitudes of this force [7 and 81 _ 

The results obtained indicate the possibility of effici- 
ent impact vibration damping over a broad range of 
perturbations. This is due to the fact that impact 
interaction occurs at instants determined by positions 

of the principal mass at which its velocity is close 
Fig. 3 to maximum. 

It is interesting to compare the efficiency of vibra- 
tion dampers with different types of coupling between 
the mass of the damped system and the damper mass. 
Fig. 4 shows the vibration amplitude at resonance 

frequency as a function of the relative damper mass 
for an optimally tuned viscous-damped Lanchester 

Fig. 4 damper [9] or a damper with an extremal damping 

factor control [3] (curve l), and for the model inves- 

tigated above (curve 2). As is evident from the figures, damping by means of controlled 
impact interaction is more than twice as efficient. 

It should be noted that the strongly nonlinear system with impact interactions which 

we have considered cannot be “linearized” by introducing some equivalent viscous fric- 
tion coefficient, since the divergence of the results is too large even with optimun linear 

friction 
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1. Spherical and cylindrical detonation waves, converging respectively to a point or 

to the axis of symmetry, are investigated. The usual assumptions are made : 
1) the detonation wave is strong, i. e. the values of the pressure and internal energy 

in the undisturbed fluid can be neglected in comparison with their values in the disturbed 

gas : 
2) during the passage of the shock wave through the medium there is instantaneously 

released an energy 6? , in ?7J2/sec2 (the magnitude of 8 refers to unit mass) : 
3) the process in the disturbed fluid is polytropic with exponent y . 

From the conditions for the conservation of mass, momentum, and energy at the deto- 
nation wave jJ and 21 we have 

(1.2) 

The equations for the one-dimensional motion of a gas have the form, in Eulerian 

variables, aU 

Pat +pv ~++J, g+FJ $+ 
aP vx+y=o (1.3) 

$$+ 
aP v a,+rp g+yT.=o 

Here w = 0 for the plane case, V = 1 for the cylindrical one, and v = 2 for spherical 
symmetry. 

2, We investigate the case when the spherical or cylindrical detonation front con- 
verges from infinity according to the rule 


